
OUTIN

Speech

CIO

Real ASR / TTS

Base CIO

CM

Engine

Schema

Fact Tree

Transcript
File

(XML)

Base AC

Real App Code

AC

Read E-Mail
Access Calendar
Etc.

Database, Web, Etc.

A FUNDAMENTAL ARCHITECTURE TO INTEGRATE
CONVERSATION MANAGEMENT ENGINES WITH

CONVERSATION DEVELOPMENT AND EVALUATION
TOOLS

Emmett J. Coin, J. Qua

ejTalk Research
ejTalk.com

ABSTRACT

As the need for dialog design grows, developers will need to
build more ambitious conversations more quickly. These
conversations will be more complex, more numerous, and be
subject to increasing economic pressure [3] to maintain and
enhance them. Based on accepted data exchange standards, we
propose a system that makes a sensible division of the
conversation development [2], runtime and maintenance tasks,
while also promoting the usability of autonomous, independent
developments in conversation management.

1. INTRODUCTION

Building a conversational system, for even a small domain, is a
very large task. There are two major problems that we address:
1) A major obstacle in the development process is
understanding and quantifying what happens within a specific
conversation as well as a statistical view of collections of
conversations. This is critical since the spiral method of design
requires that we find the biggest problem, try to fix it, and
measure our fix to see how much better it is. Doing user trials
is expensive and time consuming, so it is very advantageous to
do as many design cycles as possible before the next trial is
done. 2) Another obstacle is that current systems often weave
together a tangled web of code that encompasses ASR, TTS,
NLP, task schema, conversational strategies, knowledge stores,
specific application code and more. This problem requires a
"divide and conquer" solution. We will benefit if we divide the
task into clear, distinct and isolated components based on
specific disciplines.

Both of these issues are supported by an XML data exchange
scheme: 1) Quantification and spiral methods benefit from
viewing and analysis tools, but these tools are always secondary
to the engine. Obviously the conversational system needs to
converse before it can be measured. And, it is usually more
interesting and intellectually rewarding to advance the engine
technology. Changes to the engine lead to changes in the
custom tools. Together these truths result in very few useful
tools when they are needed. When transcript data is written as
XML, the tools can be decoupled from the engine. New
elements will not break the tools, yet simple presentation
schemes (i.e. XSL) can quickly and easily provide new enriched
views. 2) Using XML as a communication exchange between
the isolated components will maintain clear boundaries
between their distinct functionality. (Note: This is a data

exchange paradigm, not an invocation paradigm. It will work
well in a range of environments: procedural calls, COM, simple
IP, etc.) It will also allow very specific, internal component
information to be passed to the transcript with no impact on the
system overall. Another powerful benefit is that components
can communicate "suggestible" parameters to each other, even
before the recipient of a suggestion has support for it.

Figure 1. Block diagram illustrating the first tier
components: Conversation I/O, Conversation Manager,
and Application Code.

Arrows indicate XML exchanges.

2. FIRST TIER COMPONENTS
These are the first tier components and the base XML
exchanges that we identify:

2.1 Conversation I/O (CIO)

The CIO encapsulates the ASR and TTS components. We think
of it as an autonomic speech center. Its job is to speak and
listen to the human conversant. This component is independent,
and can use different technologies to "listen" and "speak" (even
different modalities as far afield as gesture, textin/textout, GUI,
etc.)

The base exchange requirements are:

A request sent to the CIO --

<TO_CIO>
 <LISTEN>hello</LISTEN>
 <SAY> Hi, Robert here. Are you ready to
 get started?
 </SAY>
</TO_CIO>
A result returned from the CIO --

<FROM_CIO>
 <HEARD>WHY</HEARD>
</FROM_CIO>

2.2 Conversation Manager (CM)

The CM encapsulates the consciousness of the synthetic agent.
It requests that the CIO speak and listen. It then expects the
CIO to report what it heard. The CM has the job of
understanding what the CIO heard, acting on the human's
intentions, transitioning to an appropriate state, and advancing
the conversation.

We obtain further benefit by dividing the CM into even smaller
components, each of which is XML exchange based for their
definition as well as inter-component communications (see
Section 3). A reasonable segmentation is:

• Engine
• Schema
• Database
• Log

2.3 Application Code (AC)

The AC is the “muscle” of the system. It does something that is
external to the conversation. The AC does some kind of real
world activity that the CM "intends" to do.

It is “Real” code written by “Real” programmers. The
application code communicates with the CM via an XML
exchange.

A request sent to the AC --

<DO>
 <FUNCTION>LOGON_TO_EMAIL</FUNCTION>
 <INPUT>
 <ACCOUNT_NAME>

 emmett@ejTalk.com
 </ACCOUNT_NAME>
 <PASSWORD>
 ASRU99
 </PASSWORD>
 </INPUT>
</DO>
A result returned from the AC --

<DID>
 <FUNCTION>LOGON_TO_EMAIL</FUNCTION>
 <INPUT>
 <ACCOUNT_NAME>
 emmett@ejTalk.com
 </ACCOUNT_NAME>
 <PASSWORD>
 ASRU99
 </PASSWORD>
 </INPUT>
 <OUTPUT>
 <EMAIL_LOGON_SUCCESS>TRUE
 </EMAIL_LOGON_SUCCESS>
 <UNREAD_EMAIL_COUNT>7
 </UNREAD_EMAIL_COUNT>
 </OUTPUT>
</DID>

2.4 Tools

An infinite variety of tools are possible ranging from viewers to
annotators to extractors.

Since all the components (and sub-components) are rooted in
XML, it is easy to craft interactive, browser-based, visual tools
to extract, examine, and display elements and relationships.

One of the first tools of interest is a transcript viewer: What
happened in a particular conversation? It is a simple task using
eight or so lines of XSL to view a basic transcript of:

…
MACHINE: Hello my name is Robert.
HUMAN: Hello.
MACHINE: What do you want to do?
HUMAN: Check my calendar.
…
Another line of XSL can show the current STEP name. And
another line could make a direct link from that point in the
transcript to the STEP viewer to immediately see that Schema
definition.

One more line could show a debugging NOTE from the ASR
(that the CIO inserted into the returned XML exchange before
it returned to the CM). The CM engine would not need to be
told it was there. And existing viewers would not break,
although they would not display the NOTE.

We have only begun to explore the wide range of empowerment
with this approach.

3. SECOND TIER COMPONENTS
Using the ejTalk™ CM as an example, we can illustrate how
a deeper layer of compartmentalization [4][1] benefits by the
XML approach.

Figure 2. Overview of the ejTalk™ CM components.

3.1 Engine
The raw “brain” is a universal conversation machine waiting
for a purpose (tabla rasa). It can communicate with the CIO,
FactTree, Transcript, etc., but it doesn't know why. It is data
driven via Schema definitions.

3.2 Schema
The “brain” software. It embodies the purpose, experience,
preferences, goals, etc. Our engine uses an Object-Oriented
DOMAIN/STEP state machine core. This methodology
resolves a fundamental unit of conversation the
FULL_STEP. A STEP includes:

• SPEAK - TTS generative grammar based
utterance

• LISTEN - ASR context, usually resolved at the
DOMAIN level

• UNDERSTAND - fits the ASR result to a
semantic cluster in a STEP schema

• ACT - sets Facts, generates transitional speech,
loads any information destined to exit the CM,
determines the next transition, etc.

The XML representation of a simple ejTalk™ STEP: (Note:
because of the OO methodology most STEPs would not contain
all this explicitly, but would get much of its content implicitly
from its derivation.

<STEP>
 <PROPERTIES>
 <FILE_NAME>first_entry</FILE_NAME>
 <PURPOSE>Start a conversation
 </PURPOSE>
 <AUTHOR> Emmett J. Coin</AUTHOR>
 <CREATION_DATE>
2/11/99</CREATION_DATE>
 <BASE_STEP>get_name</BASE_STEP>
 </PROPERTIES>
 <SPEAK>
 <S>
 <OR>
 <SYM>HELLO</SYM>
 <SYM>MY_NAME_IS</SYM>
 <PUNC>PERIOD</PUNC>
 </OR>
 </S>
 <HELLO>
 <OR>
 <TERM>Hi</TERM>
 </OR>
 <OR>
 <TERM>Hello</TERM>
 </OR>
 </HELLO>
 <MY_NAME_IS>
 <OR>
 <TERM>My name is Robert</TERM>
 </OR>
 <OR>
 <TERM>I am Robert</TERM>
 </OR>
 </MY_NAME_IS>
 </SPEAK>
 <UNDERSTAND>
 <YES>
 <SAY>
 <S>
 <OR>
 <SYM>OKAY_THEN</SYM>
 <PUNC>PERIOD</PUNC>
 </OR>
 </S>
 <OKAY_THEN>
 <OR>
 <SYM>OKAY</SYM>
 </OR>
 <OR>
 <SYM>OKAY</SYM>
 <TERM>then</TERM>
 </OR>
 </OKAY_THEN>
 <OKAY>
 <OR>
 <TERM>Okay</TERM>

To CIO

STEP “First”

Speak
Listen
Understand

Domain “Hello”

Arrows indicate XML exchanges.
To AC

Schema

CM

Engine

Transcript

FactTree

 </OR>
 <OR>
 <TERM>Well</TERM>
 </OR>
 </OKAY>
 </SAY>
 <TO_STEP>get_name</TO_STEP>
 </YES>
 <HELLO>
 <SAY>
 <S>
 <OR>
 <TERM>It's a start</TERM>
 <PUNC>PERIOD</PUNC>
 </OR>
 </S>
 </SAY>
 <TO_STEP>get_name</TO_STEP>
 </HELLO>
 </UNDERSTAND>
</STEP>

3.3 FactTree
The FactTree defines a specific instance of the current
Schema. It contains specific information about this synthetic
agent as well as this specific conversation. In our model the
FactTree persists and grows.

The Engine, Schema and FactTree can be thought of as
layers. Each layer adds more color and texture to the
synthetic agent.

As the name FactTree implies, it uses an XML document
tree to store and retrieve data

3.4 Transcript
The transcript is a complete record of the happenings in one
encounter between a human and the agent. It can contain as
much detail as needed without concern for the burden on the
analysis tools. An example for one FULL_TURN extracted
from a transcript:

…
<FULL_TURN>
 <DOMAIN>hello</DOMAIN>
 <STEP>first_entry</STEP>
 <TIME>Sun Aug 01 00:04:03 1999</TIME>
 <STEP_COUNT>2</STEP_COUNT>
 <FROM_CMIO>
 <SAID>Why worry about reasons? Just do
 it. Hi there, anyone home?
 </SAID>
 <HEARD>WHY</HEARD>
 <UTT_RECORD>19990622_280443.wav
 </UTT_RECORD>
 <LAST_TTSLABEL>0</LAST_TTSLABEL>
 </FROM_CMIO>
 <UNDERSTAND>
 <FACTTREE>ESV_MEANING=[YES]</FACTTREE>
 <FACTTREE>YES=[YES_1]</FACTTREE>
 <FACTTREE>YES_1=YES</FACTTREE>
 <MEANING>YES</MEANING>
 <TO_STEP>get_name</TO_STEP>

 <TO_DOMAIN></TO_DOMAIN>
 <MEANING_DISCOVERED_IN>
 first_entry.step:
 </MEANING_DISCOVERED_IN>
 </UNDERSTAND>
 <TO_CMIO>
 <NOTE>
 STEP_INIT: Loading D:/vssdb/
 banterspec/Interface/domain/
 hello/get_name.step.
 </NOTE>
 <NOTE>
 STEP_INIT:Defer to base LISTEN.
 </NOTE>
 <LISTEN>hello</LISTEN>
 <SAY>Can you tell me your name?</SAY>
 </TO_CMIO>
 <TOTAL_TIME>88.89</TOTAL_TIME>
 <SEGMENT_TIME>43.25</SEGMENT_TIME>
</FULL_TURN>
…

4. SUMMARY

User competence in browser use is universal. XML is a simple,
powerful, quickly mastered concept. The cognitive load for
building tools and understanding how to use them is low.

All the CM, CIO, AC, Transcript, FactTree, Schema
components use the same simple XML access methods. All the
components can share data very easily.

The tool implementers can be drawn from the large pool of web
developers.

We can all use more and better tools.

5. REFERENCES
[1] Brondsted T., Bo Nygarrd B., Olsen J. "The REWARD

service creation environment, an overview" International
Conference on Spoken Language Processing. Sydney, Dec
1998.

[2] Coin E. "Conversational Analysis:Tools" Second
International Workshop on Human-Computer Conversation,
Bellagio, Italy, July 1998

[3] Eckland W., Levin E., Pieraccini R. "User Modeling for
Spoken Dialog System Evaluation" Proc of ASRU'97, Santa
Barbara, Dec 1997, pages 80-87

[4] Coin E. "Managing Conversation: Bring a Human Touch to
Speech Technology" CTI, July 1998, pages 115-118.

